

TABLE OF CONTENTS

Chapter 1. Introduction………………………………………………………….. 1

Chapter 2. Literature Survey……………………………………………………. 3

Chapter 3. System Analysis……………………………………………………… 6

3.2 Proposed System……………………………………………………… 6

Chapter 4. System Requirements……………………………………………….. 7

4.1 Hardware Requirements………………………………………………. 7

4.2 Software Requirements……………………………………………….. 7

Chapter 5. System Design………………………………………………………... 8

5.1 Introduction…………………………………………………………… 8

5.2 Network Architecture………………………………………………… 8

Chapter 6. Detailed System Design……………………………………………... 11

6.1 Use Case Diagram……………………………………………………. 11

6.2 Swimlane Diagram……………………………………………………. 12

6.3 Activity Diagram………………………………………………………. 14

Chapter 7. Implementation………...……………………………………………... 15

7.1 Module implementation and related concepts…………………………. 15

7.2 Algorithms used………………………………………………….……. 19

7.3 Steps involved in implementation…..…………………………………. 23

Chapter 8. Testing………..………...……………………………………………... 41

8.1 Purpose of testing…………………..…………………………………. 41

8.2 Black box testing……………….…..…………………………………. 41

8.3 White box testing……………….…..…………………………………. 42

8.4 Unit testing…….……………….…..…………………………………. 42

8.5 Integration testing……………….…..…………………………………. 43

8.6 System testing….……………….…..…………………………………. 44

8.7 Acceptance testing…..………….…..…………………………………. 46

8.8 Test cases……….……………….…..…………………………………. 46

Conclusion……..……………….…..…………………………………. 48

Future enhancements………….…..…………………………………. 49

Published Research Paper……………………………………………. 50

References……..……………….…..…………………………………. 51

TABLES

Table 4.1 Hardware requirements………………………………………………… 7

Table 8.1 Unit Testing…………………………………………………………….. 45

Table 8.2 Integration Testing……………………………………………………... 46

Table 8.3 Test Cases…………………………………………………………….... 49

FIGURES

Figure 5.1 Network Architecture………………………………………………….. 10

Figure 6.1 Use case diagram……………………...……………………………….. 11

Figure 6.2 Swimlane diagram….………………………………………………….. 13

Figure 6.3 Activity diagram…..…………………………………………………... 14

Figure 7.1 An image as it undergoes the steps in Canny edge detection algorithm…21

Figure 7.2 Alexnet architecture …………………………......…………….………. 21

Figure 7.3 ReLU ………………………………….……………...………………... 22

Figure 7.4 Dropout in alexnet …………….……………………………………….. 22

Figure 7.5 Colour image……………….…….……………………………………... 25

Figure 7.6 Image after converting to grayscale ……………………………………. 25

Figure 7.7 Image before applying canny edge detection ….…………………...…. 26

Figure 7.8 Image after applying canny edge detection …..……………………….. 26

Figure 7.9 Region of interest on the screen ...……………………………………... 27

Figure 7.10 Image before and after applying ROI filter …..………………………... 28

Figure 7.11 Image before detecting lines …………………………………………... 29

Figure 7.12 Image after detecting lines ……………………………………….......... 29

Figure 7.13 Detecting lanes on the road ……………………………………………. 32

Figure 8.1 Different levels of testing…………...…………………………………. 42

Figure 8.2 Accuracy plot with x-axis representing number of data frames….……. 45

Lane switching in self-driving cars using CNN

Dept of CSE 1 NIE,Mysuru

Chapter 1

INTRODUCTION

 According to the statistics provided by ASIRT nearly 1.3 million people die in road

crashes each year caused by recklessness, distractions or speeding, on average 3,287 deaths a day

and an additional 20-50 million are injured or disabled. Apart from this, there are millions being

spent on vehicle repairs, all the while paying for the large volumes of fuel due to high

consumption and ending up with more pollution. One solution to taper this global problem by a

substantial amount is self-driving cars. They have the potential to significantly reduce the

number of vehicle fatalities. Additionally, wasted time spent commuting could be reduced,

increasing overall productivity. Fuel efficiency could be increased by calculating the best

possible route between destinations, thus truncating the level of pollution, however, these stand

as only a subset of the multitude of benefits provided by self-driving cars. Due to these

advantages, it is a field being highly researched on; spending immense time, intellect and

resources.

 For self-driving cars to come to realization require both hardware components and

software packages to be designed and made compatible with one another. Nonetheless, in this

project, we deal with the software aspects necessary to build a model that can learn to drive a car

in a very diverse set of virtual environment. Though the basic definition of a self-driving car: a

robotic device that can travel between destinations without a human operator, sounds quite

simple and straightforward in reality, it isn’t so. This is the very reason for us to come down in

favour of the utilization of Convolutional Neural Networks (CNN). Our approach consists of the

concept of regression at its core that is trained with prodigious datasets of images that have been

taken up from diverse conditions generated by manually driving a car in a computer video game.

Based on the input given, the model is drilled to determine the appropriate action to be taken

without the need of any human intellect. The accuracy of its decision will be based on its trained

data-sets from an image that it receives, the quality of the image and the number of course

changing factors taken into account.

Lane switching in self-driving cars using CNN

Dept of CSE 2 NIE,Mysuru

 The aim of our approach is to convert frames per second into appropriate steering angles.

The input data frames obtained by screen capturing utilizing OpenCV while manually driving a

car on a GTA 5 game console are labeled. This dataset is then scaled down to an optimal

resolution suitable for training. The scaled dataset is given as an input to a neural network

consisting of multiple hidden layers. Each layer applies a function to transform the input that has

been broadcast to it into an output. When an input arrives each of it is purveyed with a specific

weight, a bias value is added to this to obtain an output. The output is in the form of a zero or

one. If the output predicted stands to be true then the respective input value is rewarded by

incrementing its weight otherwise, it is punished by decrementing its weight. We train our neural

network using TensorFlow that works on regression.

Lane switching in self-driving cars using CNN

Dept of CSE 3 NIE,Mysuru

Chapter 2

LITERATURE SURVEY

 Jiman Kim [1], proposed a project that deals with a sequential end-to-end transfer

learning method to estimate left and right ego lanes directly and separately without any

post processing. They redefined a point-detection problem as a region-segmentation

problem; as a result, the proposed method is insensitive to occlusions and variations of

environmental conditions, because it considers the entire content of an input image

during training. An extensive dataset that is suitable for a deep neural network training by

collecting a variety of road conditions, annotating ego lanes, and augmenting them

systematically was constructed. This proposed method compared to few recent methods

in deep learning demonstrated improved accuracy and stability on input variations. Their

approach does not involve post processing, and is therefore flexible to change of target

domain.

 Zhilu Chen and Xinming Huang [2], proposed an end-to-end learning approach to obtain

a proper steering angle to maintain the car in the lane. The convolutional neural network

(CNN) model here takes raw image frames as input and outputs the steering angles

accordingly. The model is trained and evaluated using the comma.ai dataset, which

contains the front view image frames and the steering angle data captured when driving

on the road. Unlike the traditional approach that manually decomposes the autonomous

driving problem into technical components such as lane detection, path planning and

steering control, the end-to-end model can directly steer the vehicle from the front view

camera data after training. Thus their approach learns how to keep in lane from human

driving data. It also presents the discussion of the end-to-end approach employed and its

limitations.

Lane switching in self-driving cars using CNN

Dept of CSE 4 NIE,Mysuru

 Mariusz Bojarski et al [3], proposed information regarding the training of a

Convolutional Neural Network (CNN) to map raw pixels from a single front-facing

camera directly to steering commands. Their end-to-end approach with minimum training

data from humans provides a system that learns to drive in traffic on local roads with or

without lane markings and on highways. It also operates in areas with unclear visual

guidance such as in parking lots and on unpaved roads. Their system automatically learns

internal representations of the necessary processing steps such as detecting useful road

features with only the human steering angle as the training signal. Compared to explicit

decomposition of the problem, such as lane marking detection, path planning, and

control, this end-to-end system optimizes all processing steps simultaneously. Thus the

proposed system will lead to better performance and smaller systems because the internal

components self-optimize to maximize overall system performance, instead of optimizing

human-selected intermediate criteria, e. g., lane detection.

 Lin Li, Yanheng Liu, et al [4], proposed a new driver model based on human behaviour

dynamics for autonomous cars, which allows driverless cars to move appropriately in

accordance to the behavioural features of driver owners. This model is established

through analysing drivers’ various properties, e.g. gender, age, driving experience,

personality, and emotion. These attributes collectively determine all the actions occurred

during the driving process. Their proposed model is validated by the hardware-in-loop

simulator and real driving experiment. From the perspective of human dynamics, this

approach introduces the Theory of Planned Behaviour (TPB) into modelling driver for

autonomous cars. The driving process is divided into four discrete actions, i.e.

acceleration/ deceleration, direction turning, lane change, and light change and the

differences of these four actions during the navigation are realized.

 Chenyi Chen et al [5], proposed a direct perception approach to estimate the affordance

for driving. The two major paradigms for vision-based autonomous driving systems are

mediated perception approaches that parse an entire scene to make a driving decision, and

behaviour reflex approaches that directly map an input image to a driving action by a

Lane switching in self-driving cars using CNN

Dept of CSE 5 NIE,Mysuru

regressor while the one paper proposed by then is the third paradigm. The idea put

forward is to map an input image to a small number of key perception indicators that

directly relate to the affordance of a road/traffic state for driving. This representation

provides a set of compact yet complete descriptions of the scene to enable a simple

controller to drive autonomously. Falling in between the two extremes of mediated

perception and behaviour reflexes, the direct perception representation proposed in this

paper provides the right level of abstraction. The demonstration is shown by training a

deep Convolutional Neural Network thus proving that this model can work well to drive a

car in a very diverse set of virtual environments.

Lane switching in self-driving cars using CNN

Dept of CSE 6 NIE,Mysuru

Chapter 3

SYSTEM ANALYSIS

3.1 Proposed System

We have proposed a system to handle the software aspect of the self-driving cars. We use

Convolutional Neural Network to train our model using the concept of regression. We simulate

the car in a computer video game for training and testing of the model. The input to the system is

generated by manually playing the game for several hours to build a data set. This data set is

used to train our CNN. The network relates the steering angle of the car with its surroundings.

This knowledge is further used to take decisions when the car is run on its own.

Advantages of proposed system

 Convolutional Neural Networks make use of filters to assess the frames. This improves

the efficiency of the system by removing the unwanted parts of the frame which are

irrelevant for making driving decisions.

 This system does not require the presence of exact road markings and sign boards.

 Does not require decomposition of the process into several parts such as lane detection,

path planning and steering control. It can directly steer the vehicle from the front view

camera data after training. It learns how to keep in lane from human driving data.

Lane switching in self-driving cars using CNN

Dept of CSE 7 NIE,Mysuru

Chapter 4

SYSTEM REQUIREMENTS

4.1 Hardware Requirements

Processor Intel core 2 Quad CPU Q6600 @ 2.40Ghz (4CPUs) /

AMD Phenom 9850 Quad core processors (4CPUs) @ 2.50Ghz

RAM 4GB

Table 4.1 Hardware requirements

4.2 Software Requirements

 Operating System: Windows 8.1(64 bit) or above. It’s easy to run and simulate

 high graphics game in Windows OS.

 Drivers: NVIDIA/ AMD graphic Drivers

 Programming Language: Python

 Open CV

 TensorFlow

 Pywin32

 Numpy

 Pandas

Lane switching in self-driving cars using CNN

Dept of CSE 8 NIE,Mysuru

Chapter 5

SYSTEM DESIGN

5.1 Introduction

Purpose

 System design is a blueprint of the solution for a system. Design of the system can be

defined as the process of applying various techniques and principles for the purpose of defining a

process are a system in sufficient details to permit its physical realization. System design is

concerned with how the system functionalities must be provided by the different components of

the system. Thus, system design is a “how to” approach to the creation of a new system.

Scope

 The scope of this design document is to achieve the features of the system such as pre-

processing the image, feature extraction and prediction of steering angle.

5.2 Network architecture

Architecture focuses on looking at the system as a combination of many different components,

and how they interact with each other to produce the desired result. The focus is on identifying

components or subsystems and how they connect. In other words, focus is on what major

components are needed.

The network architecture consists of the following phases.

Pre-Processing: The pre-processing is a series of operations performed on the generated input

frames. It essentially resizes and enhances the frame making it suitable for training. It primarily

includes converting the RGB image frames into greyscale and resizing it to a lower resolution

Lane switching in self-driving cars using CNN

Dept of CSE 9 NIE,Mysuru

(80x60). The other operations included in this phase are noise filtering, smoothing and

sharpening. This phase is important for making the training and prediction process faster.

Normalization: The second phase in the architecture performs image normalization.

Normalization done prior to the training process, is crucial to obtain good results as well as

fasten significantly the calculations. This phase ensures that all the inputs are at a comparable

range.

Convolution: This phase includes a number of convolutional layers which are designed to

perform feature extraction. Convolution preserves the spatial relationship between pixels by

learning image features using small squares of input data. A weight matrix called filter slides

over the input image to produce a feature map. The convolution of another filter (with the green

outline), over the same image gives a different feature map. CNN learnsthe values of these filters

on its own during the training process

Pooling: Spatial Pooling (also called subsampling or down sampling) reduces the dimensionality

of each feature map but retains the most important information. To rescale a large image, one

natural approach is to aggregate statistics of these features at various locations. Spatial Pooling

can be of different types: Max, Average, Sum etc. These summary statistics are much lower in

dimension (compared to using all extracted features) and improves results.

Max pooling: It computes the max value of a particular feature over a region of the image.

Mean pooling: It computes the mean value of a particular feature over a region of the image.

Fully connected layers: The frames then pass through a number of fully connected layers,

leading to a final output control value which is the inverse-turning radius. The fully connected

layers are designed to function as a controller for steering.

Lane switching in self-driving cars using CNN

Dept of CSE 10 NIE,Mysuru

Fig 5.1 Network Architecture

Lane switching in self-driving cars using CNN

Dept of CSE 11 NIE,Mysuru

Chapter 6

DETAILED SYSTEM DESIGN

6.1 Use case diagram

Fig 6.1 Use case diagram

Lane switching in self-driving cars using CNN

Dept of CSE 12 NIE,Mysuru

 A use case diagram in the Unified Modelling Language (UML) is a type of behavioral

diagram defined by and created from a use case analysis. Its purpose is to present a graphical

overview of the functionality provided by a system in terms of actors, their goals, and any

dependencies between those use cases.

 The above figure 6.1 depicts the actions performed by the system and the car. Most of the

activities are performed by the system. Initialization, image processing, normalization, extraction

of features and generation of output are performed by the system. The car generates the images

and the screenshots of the path in front of it which are used to train the model.

6.2 Swimlane diagram

 A swim lane (or swim lane diagram) is a visual element used in process flow diagrams,

or flowcharts that visually distinguishes job sharing and responsibilities for sub-processes of a

business process. Swim lanes may be arranged either horizontally or vertically.

 The jobs in our system are majorly shared among three components, car, pre-processing

and prediction. The car generates the frames which depict the situation in front of it. In the pre-

processing section, filtering, noise-removal, grayscale conversion and normalization are applied

to the images sent by the car. The prediction component extracts features from this data and

predicts the steering angle.

Lane switching in self-driving cars using CNN

Dept of CSE 13 NIE,Mysuru

Fig 6.2 Swimlane diagram

Lane switching in self-driving cars using CNN

Dept of CSE 14 NIE,Mysuru

6.3 Activity diagram

 Activity diagram describes the flow of control in a system. So, it consists of activities and

links. The flow can be sequential, concurrent or branched.

 Activities are nothing but the functions of a system. Numbers of activity diagrams are

prepared to capture the entire flow in a system.

 Activity diagrams are used to visualize the flow of controls in a system. This is prepared

to have an idea of how the system will work when executed.

Fig 6.3 Activity diagram

Lane switching in self-driving cars using CNN

Dept of CSE 15 NIE,Mysuru

Chapter 7

IMPLEMENTATION

 Implementation is the stage in the project where the theoretical design is turned into a

working system. The most critical stage is achieving a successful system and in giving

confidence on new system for the users, that it will work efficient and effectively.

 It involves careful planning, investigating the current system, and its constraints on

implementation, design of methods to achieve the changeover, an evaluation of changeover

methods.

 The implementation process started with preparing a plan for the implementation of the

system. According to this plan, discussion has been made regarding the equipment, resources and

test activities to be performed. Thus, a clear plan was prepared for activities.

7.1 Module Implementation and related concepts

7.1.1 Python

 Python is a widely used high-level programming language for general-purpose

programming. An interpreted language, Python has a design philosophy which emphasizes code

readability (notably using whitespace indentation to delimit code blocks rather than curly braces

or keywords), and a syntax which allows programmers to express concepts in fewer lines of code

than possible in languages such as C++ or Java. The language provides constructs intended to

enable writing clear programs on both a small and large scale. Python features a dynamic type

system and automatic memory management and supports multiple programming paradigms,

including object-oriented, imperative, functional programming, and procedural styles. It has a

large and comprehensive standard library. Python interpreters are available for many operating

systems, allowing Python code to run on a wide variety of systems.

Lane switching in self-driving cars using CNN

Dept of CSE 16 NIE,Mysuru

7.1.2 NumPy

 NumPy is a fundamental package for scientific computing in python programming

language. It is a Python library that provides multidimensional array object, various derived

objects such as masked arrays and matrices, and an assortment of routines for fast operations on

arrays, including mathematical, logical, shape manipulation, sorting, selecting, I/O, discrete

Fourier transforms, basic linear algebra, basic statistical operations, random simulation and much

more.The ancestor of NumPy, Numeric, was originally created by Jim Hugunin with

contributions from several other developers. In 2005, Travis Oliphant created NumPy by

incorporating features of the competing Numarray into Numeric, with extensive modifications.

NumPy is open-source software and has many contributors.

 At the core of the NumPy package, is the ndarray object. This encapsulates n-dimensional

arrays of homogeneous data types, with many operations being performed in compiled code for

performance. There are several important differences between NumPy arrays and the standard

Python sequences.NumPy fully supports an object-oriented approach, starting, once again, with

ndarray. For example, ndarray is a class, possessing numerous methods and attributes. Many of

its methods mirror functions in the outer-most NumPy namespace, giving the programmer

complete freedom to code in whichever paradigm she prefers and/or which seems most

appropriate to the task at hand.

7.1.3 Win32 API

 The Windows API, informally WinAPI, is Microsoft's core set of application

programming interfaces (APIs) available in the Microsoft Windows operating systems. The name

Windows API collectively refers to several different platform implementations that are often

referred to by their own names (for example, Win32 API). Almost all Windows programs interact

with the Windows API.Developer support is available in the form of a software development kit,

Microsoft Windows SDK, providing documentation and tools needed to build software based on

the Windows API and associated Windows interfaces. The functions provided by Windows API

can be grouped into eight categories namely 1) Base services 2) Advance services 3) Graphic

device interface 4) User Interface 5)Common Dialogue box library 6) Common control library

7)Windows shell 8) NetworK services.

Lane switching in self-driving cars using CNN

Dept of CSE 17 NIE,Mysuru

 Win32 is the 32-bit application programming interface (API) for modern versions of

Windows. The API consists of functions implemented, as with Win16, in system Dynamic Link

Library (DLL). The core DLLs of Win32 are kernel32.dll, user32.dll, and gdi32.dll. Win32 was

introduced with Windows NT. The version of Win32 shipped with Windows 95 was initially

referred to as Win32c, with c meaning compatibility. This term was later abandoned by

Microsoft in favour of Win32.

7.1.4 Win32 GUI

 "Win32::GUI is a Win32-platform native graphical user interface toolkit for Perl.

Basically, it's an XS implementation of most of the functions found in user32.dll and gdi32.dll,

with an object oriented Perl interface and an event-based dialog model that mimic the

functionality of visual basic.

7.1.5 Win32ui

 Win32ui is a Windows only IDE and GUI framework for Python. It has an integrated

debugger, and a rich Python editing environment.

 Win32ui is implemented as a 'wrapper' for the Microsoft Foundation Class library. With

it, you can use MFC in an interactive, interpreted environment, or write full blown stand-alone

applications tightly coupled with the Windows environment. Over 30 MFC objects are exposed,

including Common Controls, Property Pages/Sheets, Control/Toolbars, Threads, etc.

Win32ui could almost be considered a sample program for the MFC UI environment. This

Python UI environment can be embedded in almost any other application - such as OLE

clients/servers, Netscape plugins, as a Macro language etc.

7.1.6 Ctypes

 Ctypes is a foreign function library for Python 2.3 and higher versions. It provides C

compatible data types, and allows calling functions in DLLs or shared libraries. It can be used to

wrap these libraries in pure Python.It is even possible to implement C callback functions in pure

Python.ctypes also includes a code generator tool chain which allows automatic creation of

library wrappers from C header files. ctypes works on Windows, Mac OS X, Linux, Solaris,

FreeBSD and other systems.

Lane switching in self-driving cars using CNN

Dept of CSE 18 NIE,Mysuru

7.1.7 Pandas

 Pandas is a software library written for the Python programming language for data

manipulation and analysis. In particular, it offers data structures and operations for manipulating

numerical tables and time series. The name is derived from “panel data”,an econometrics term

for multi-dimensional structured datasets.

 Pandas is a game changer when it comes to data analysis with python and it is the most

preferred tool in data wrangling. Pandas take data in CSV or TSV or SQL database format and

creates a python object with rows and columns called “dataframes” . It is open source and free to

use is another advantage of pandas. We can find the maximum, minimum, mean, sort the values,

select the values, replace a value, find a particular value in the dataframe using pandas

commands.

7.1.8 Tensor Flow

 Tensor Flow is an open source software library for machine learning across a range of

tasks, and developed by Google to meet their needs for systems capable of building and training

neural networks to detect and decipher patterns and correlations, analogous to the learning and

reasoning which humans use. It is currently used for both research and production at Google

products, often replacing the role of its closed-source predecessor, DistBelief. TensorFlow was

originally developed by the Google Brain team for internal Google use before being released

under the Apache 2.0 open source license on November 9, 2015.

 While the reference implementation runs on single devices, TensorFlow can run on

multiple CPUs and GPUs (with optional CUDA extensions for general-purpose computing on

graphics processing units). TensorFlow is available on 64-bit Linux, macOS, and mobile

computing platforms including Android and iOS.

7.1.9 Tflearn

 TF.Learn is a high-level Python module for distributed machine learning inside

TensorFlow. It provides an easy-to-use interface to simplify the process of creating, configuring,

training, evaluating, and experimenting a machine learning model. TF.Learn integrates a wide

range of state-of art machine learning algorithms built on top of TensorFlow’s low level APIs for

small to large-scale supervised and unsupervised problems. This module focuses on bringing

Lane switching in self-driving cars using CNN

Dept of CSE 19 NIE,Mysuru

machine learning to non-specialists using a general-purpose high-level language as well as

researchers who want to implement, benchmark, and compare their new methods in a structured

environment.

 Tflearn fully utilizes python’s object oriented characteristics. Similar to libraries like

Pandas, a high-level DataFrame module is included in TFLearn to facilitate many common data

reading/parsing tasks from various resources such as tensorflow. It also includes functions like

FeedingQueueRunner to fetch data batches and put them in a queue so training and data feeding

can be performed asynchronously in different threads to avoid wasting a lot of time waiting for

data batches to get fetched. This is very useful especially in case of using virtual GPU.

7.2 Algorithms Used

7.2.1 Canny Edge Detection Algorithm

The Canny Edge detector was developed by John F. Canny in 1986. Also known to many as

the optimal detector, Canny algorithm aims to satisfy three main criteria:

 Low error rate: Meaning a good detection of only existent edges.

 Good localization: The distance between edge pixels detected and real edge pixels have

to be minimized.

 Minimal response: Only one detector response per edge.

Steps

1. Filter out any noise. The Gaussian filter is used for this purpose. An example of a

Gaussian kernel of size = 5 that might be used is shown below:

Lane switching in self-driving cars using CNN

Dept of CSE 20 NIE,Mysuru

2. Find the intensity gradient of the image. For this, we follow a procedure analogous to

Sobel:

a. Apply a pair of convolution masks (in x and y directions):

b. Find the gradient strength and direction with:

The direction is rounded to one of four possible angles (namely 0, 45, 90 or 135)

3. Non-maximum suppression is applied. This removes pixels that are not considered to be

part of an edge. Hence, only thin lines (candidate edges) will remain.

4. Double Thresholding:

 Noise and color are distinguished using a certain threshold

 Edge pixels stronger than the high threshold are marked strong and those edge
pixels weaker than the low threshold are marked weak.

5. Hysteresis: The final step. Canny does use two thresholds (upper and lower):

a. If a pixel gradient is higher than the upper threshold, the pixel is accepted as an

edge

b. If a pixel gradient value is below the lower threshold, then it is rejected.

Lane switching in self-driving cars using CNN

Dept of CSE 21 NIE,Mysuru

c. If the pixel gradient is between the two thresholds, then it will be accepted only if

it is connected to a pixel that is above the upper threshold.

 Fig 7.1 An image as it undergoes the steps in Canny edge detection algorithm

7.2.1 Alexnet

 This architecture was one of the first deep networks to push ImageNet Classification

accuracy by a significant stride in comparison to traditional methodologies. It is composed of 5

convolutional layers followed by 3 fully connected layers.

Fig 7.2 Alexnet architecture

 AlexNet, proposed by Alex Krizhevsky, uses ReLu(Rectified Linear Unit) for the non-

linear part, instead of a Tanh or Sigmoid function which was the earlier standard for traditional

neural networks. ReLu is given by:

f(x) = max(0,x)

Lane switching in self-driving cars using CNN

Dept of CSE 22 NIE,Mysuru

 The advantage of the ReLu over sigmoid is that it trains much faster than the latter

because the derivative of sigmoid becomes very small in the saturating region and therefore the

updates to the weights almost vanish. This is called vanishing gradient problem.

 In the network, ReLu layer is put after each and every convolutional and fully-connected

layers(FC).

Fig 7.3 ReLU

 Another problem that this architecture solved was reducing the over-fitting by using a

Dropout layer after every FC layer. Dropout layer has a probability,(p), associated with it and is

applied at every neuron of the response map separately. It randomly switches off the activation

with the probability p, as can be seen in figure 5.

Fig 7.4 Droupout in Alexnet

Lane switching in self-driving cars using CNN

Dept of CSE 23 NIE,Mysuru

Why does dropout work?

 The idea behind the dropout is similar to the model ensembles. Due to the dropout layer,

different sets of neurons which are switched off, represent a different architecture and all these

different architectures are trained in parallel with weight given to each subset and the summation

of weights being one. For n neurons attached to DropOut, the number of subset architectures

formed is 2^n. So it amounts to prediction being averaged over these ensembles of models. This

provides a structured model regularization which helps in avoiding the over-fitting. Another

view of DropOut being helpful is that since neurons are randomly chosen, they tend to avoid

developing co-adaptations among themselves thereby enabling them to develop meaningful

features, independent of others.

7.3Steps involved in implementation

7.3.1 Grabscreen

We use this function to obtain a screenshot of the screen.

This function uses the various methods available in the win32ui, win32gui, win32con and

win32api.These methods provide calls to various APIs which take the value of each pixel on the

screen and convert into an image format.

This function does not take any argument and returns an image.

Lane switching in self-driving cars using CNN

Dept of CSE 24 NIE,Mysuru

7.3.2 Processing image

The image that is obtained by taking the screenshot of the screen is a colored image.In a colored

image, each pixel is represented by an array of three numbers each ranging from 0 to 255.Hence,

each pixel occupies 32 bits of memory. But, for our analysis, the distance of each object from our

vehicle is necessary.

The color of the object does not matter.Hence, we convert the image to grayscale so that each

pixel can be represented using just 8 bits.The size of our data set will reduce three times by

performing this step.

Lane switching in self-driving cars using CNN

Dept of CSE 25 NIE,Mysuru

Fig 7.5 Colour image

Fig 7.6 Image after converting to grayscale

Lane switching in self-driving cars using CNN

Dept of CSE 26 NIE,Mysuru

After converting the image to grayscale, we use the canny edge detection algorithm to detect the

edges from the image.

This step removes all the noise from the image and returns only the edges that are necessary for

our processing.

Fig 7.7 Image before applying canny edge detection

Fig 7.8 Image after applying canny edge detection

Lane switching in self-driving cars using CNN

Dept of CSE 27 NIE,Mysuru

7.3.3 Region of Interest

The image that is obtained by capturing the screen contains many elements.

To take a driving decision, we only require the road in front of the vehicle and other obstacles on

the road.Elements which are present outside the road and in the sky are not required for our

analysis.

To eliminate these objects from increasing the size of our data set and adulterating our decision

making process, we define a function, region of interest.

This function basically cuts off the image into two parts and eliminates the unnecessary objects.It

takes an image and a set of vertices as input, performs the necessary processing and returns the

cropped image as output.

Fig 7.9 Region of Interest on the screen

Lane switching in self-driving cars using CNN

Dept of CSE 28 NIE,Mysuru

Fig 7.10 Image before and after applying ROI filter

7.3.4 Line Detection

cv2.HoughLinesP(pro_img, w, np.pi/180, x, y, z)

 The lines are detected from the given image using Houghline transform mechanism

 Parameters :

o Pro_img - image on which the function is to be applied

o w - Rho value

o x - Threshold

o y - Minimum length

o z - Maximum gap

Hough Line transformation is used to detect any shape. This method represents any shape in

mathematical form. It has two parameters associated with it:

o Minimum line length - This is used to specify that value below which line

segments are rejected

o Maximum line gap - Maximum gap that is permissible between lines to treat them

as a single line

Lane switching in self-driving cars using CNN

Dept of CSE 29 NIE,Mysuru

Fig 7.11 Image before detecting lines

Fig 7.12 Image after detecting lines

Lane switching in self-driving cars using CNN

Dept of CSE 30 NIE,Mysuru

The houghlines function returns an array in which each element is a set of two geometrical

coordinates representing the end points of each line. This array is then passed to the cv2.line

function in the draw_lines() method which draws these lines as shown on the screen.

7.3.5 Lane Detection

Not all the lines that are detected from the draw_lines() function are lanes. To specifically find

the lanes present in the image, we use the function draw_lanes().

We take the lines obtained from the draw_lines() function as the input to this function. Here, we

filter out the unwanted lines by first determining the length of each line. The lines which are

smaller than a minimum value are neglected.

From the remaining lines, we calculate the slopes of each line by using the formula (y1-y2)/(x1-

x2). Only the pairs of lines whose slopes are almost equal and are of opposite signs represent a

lane. All such pairs are taken into consideration. We then draw these lines over the image using

its coordinates to show the lanes.

Lane switching in self-driving cars using CNN

Dept of CSE 31 NIE,Mysuru

Lane switching in self-driving cars using CNN

Dept of CSE 32 NIE,Mysuru

Fig 7.13 Detecting lanes on the road

7.3.6 Creating training data

The data set required for the training of our model is generated using this function. To generate

this data, we manually drive the car in the game. While we are manually driving the car,

screenshots of the screen are taken continuously. We do this until we generate 1,00,000 images.

The data set is in the form of a numpy array in which each element is a tuple. The first element

of the tuple is the image. The second element is an array which denotes the key that was being

pressed when that image was taken. All these tuples are stored in a file named training_data.

Lane switching in self-driving cars using CNN

Dept of CSE 33 NIE,Mysuru

7.3.6 Extracting the list of keys that are pressed

To extract the list of keys that are pressed when a particular screenshot is taken, we use this

function named key_check(). We make use of the GetAsyncKeyState() method available in the

win32api package to accomplish this.

The keys_to_output() function returns the list of keys in the format required for creating the

dataset. As we use only the ‘A’, ‘W’, and ‘D’ keys to control the car in the game, we consider

the state of only these keys.

Lane switching in self-driving cars using CNN

Dept of CSE 34 NIE,Mysuru

7.3.7 Alexnet

We employ Tensorflow TFlearn package to create an Alexnet, a type of CNN which contains

five Convolutional layers and three fully connected layers as shown in fig.(2). The design of the

convolutional layers is to perform feature extraction. It preserves the spatial relationship between

the pixels by learning image features using small squares of input data. A weight matrix called

filter slides over the input image produces a feature map. The network learns values of these

filters on its own during the training process. The design of the fully connected layers is to

function as a controller for steering where the image frames pass through these layers, leading to

a final output control value which is an inverse turning radius. Rectified Linear Unit(ReLU)

[6],[7] is applied after every convolutional and fully connected layer. ReLU is a function first

introduced by Hahnloser et al. It was then stated by Nair et al that ReLU is an effective

activation for use in neural network as well. ReLU function is given by:

f(x)=max(0,x)

Dropout is applied before the first and the second fully connected layer. Dropout helps in

removing complex co-adaption. Removal of complex co-adaption implies training node in a

Lane switching in self-driving cars using CNN

Dept of CSE 35 NIE,Mysuru

neural network with a randomly selected sample of other nodes. This makes the node more

robust and drive it towards creating useful features, without relying much on other nodes.

Overlap pooling is used to reduce the size of the network.

 Further, we use TensorFlow object detection API to detect other vehicles on road and to

determine the distance from them. They use pixels from the input matrix data set as predictors

and predict which operation the vehicle has to perform (turn left/ turn right or / straight).

7.3.8 Training the model

TensorFlow is an open source programming library made by Google which is utilized to

configure, construct and train profound learning models. The library of TensorFlow contains

Lane switching in self-driving cars using CNN

Dept of CSE 36 NIE,Mysuru

various powerful algorithms to do numerical computations, which in itself doesn’t seem all too

special, but achieve these computations with data flow graphs. In these graphs, edges depict the

data while the nodes illustrate the mathematical operations, usually are multidimensional tensors

and/or data arrays, that are conveyed between these edges. The operations which neural networks

perform on multidimensional data arrays or tensors is literally a flow of tensors, hence the name

“TensorFlow”.

We utilize TensorFlow in our model to learn how to automatically spot a complex pattern or

image. Depending on the images recognised the system takes the best possible decision

independently. Further, we construct a computational graph that consists of nodes represents an

operation and edges which represents multi-dimensional data arrays using TensorFlow.

Subsequent to defining the operations we set up a TensorFlow session in order to perform

calculations on the defined graph.

We divide the dataset that was generated into parts, the training data and testing data. We then

train the neural network using the training data.

We use the model.fit() function from the tflearn package to train the data. The syntax of the

function is:

fit (X_inputs, Y_targets, n_epoch=10, validation_set=None, show_metric=False,

batch_size=None, shuffle=None, snapshot_epoch=True, snapshot_step=None,

excl_trainops=None, validation_batch_size=None, run_id=None, callbacks=[])

This function takes many arguments:

 X_inputs: array, list of array (if multiple inputs) or dict (with inputs layer name as keys).

Data to feed to train model.

 Y_targets: array, list of array (if multiple inputs) or dict (with estimators layer name as

keys). Targets (Labels) to feed to train model.

 n_epoch: int. Number of epoch to run. Default: None.

Lane switching in self-driving cars using CNN

Dept of CSE 37 NIE,Mysuru

 validation_set: tuple. Represents data used for validation. tuple holds data and targets

(provided as same type as X_inputs and Y_targets). Additionally, it also

accepts float (<1) to performs a data split over training data.

 show_metric: bool. Display or not accuracy at every step.

 batch_size: int or None. If int, overrides all network estimators 'batch_size' by this value.

Also overrides validation_batch_size if int, and if validation_batch_size is None.

 validation_batch_size: int or None. If int, overrides all network estimators

'validation_batch_size' by this value.

 shuffle: bool or None. If bool, overrides all network estimators 'shuffle' by this value.

 snapshot_epoch: bool. If True, it will snapshot model at the end of every epoch.

(Snapshot a model will evaluate this model on validation set, as well as create a

checkpoint if 'checkpoint_path' specified).

 snapshot_step: int or None. If int, it will snapshot model every 'snapshot_step' steps.

 excl_trainops: list of TrainOp. A list of train ops to exclude from training process

(TrainOps can be retrieve through tf.get_collection_ref(tf.GraphKeys.TRAIN_OPS)).

 run_id: str. Give a name for this run. (Useful for Tensorboard).

 callbacks: Callback or list. Custom callbacks to use in the training life cycle

Lane switching in self-driving cars using CNN

Dept of CSE 38 NIE,Mysuru

7.3.9 Test model

Once the model is trained, the model will be ready to be tested. We open the game in one

window and then run the script. The program continuously takes screenshots and analyses the

image. From its knowledge from the training, the neural networks now takes the appropriate

driving decision.

In this function, we send the image as an argument to the model.predict() function. This function

returns the set of keys to be pressed for that particular image. This returned value is an array of

three elements, each representing the probability of the respective key to be pressed. If the value

corresponding to a key crosses a threshold, then that prediction is taken into confidence and the

appropriate key is pressed. The threshold for going straight is kept as 0.7 while the threshold for

left and right keys is set to 0.75.

Lane switching in self-driving cars using CNN

Dept of CSE 39 NIE,Mysuru

Once a decision is taken on which key is pressed, we call the appropriate functions to implement

that decision.

Lane switching in self-driving cars using CNN

Dept of CSE 40 NIE,Mysuru

We use the functions PressKey() and ReleaseKey() which in turn use the methods defined in the

ctypes package to make system calls which press the corresponding keys from the keyboard.

Lane switching in self-driving cars using CNN

Dept of CSE 41 NIE,Mysuru

Chapter 8

TESTING

 Software testing is an investigation conducted to provide stakeholders with information

about the quality of the product or service under test. Software testing can also provide an

objective, independent view of the software to allow the business to appreciate and understand

the risks of software implementation. Test techniques include the process of executing a program

or application with the intent of finding software bugs (errors or other defects).

8.1 Purpose of testing

 There are two fundamental purposes of testing: Verifying procurement specifications and

Managing Risk. First, testing is about verifying that what was specified is what was delivered: it

verifies that the product (system) meets the functional, performance, design and implementation

requirements identified in the procurement specifications. Second, testing is about, managing

risks for both the acquiring agency and the system vendor/ developer/ integrator. The testing

programme is used to identify when the work has been completed so that the contract can be

closed, the vendor paid, and the system shifted by the agency into the warranty and maintenance

phase of the project.

8.2 Black Box testing

 The technique of testing without having any knowledge of interior working of the

application is Black box testing. The tester is obvious to the system architecture and does not

have access to the source code. Typically, when performing a black box test, a tester will interact

with the system’s user interface by providing inputs and examining outputs without knowing

how and where the inputs are worked upon.

Lane switching in self-driving cars using CNN

Dept of CSE 42 NIE,Mysuru

8.3 White Box testing

 White box testing is the detailed investigation of the internal logic and structure of the

code. White box testing is also called glass testing or open box testing. In order to performwhite

box testing on an application, the tester needs to possess knowledge of the internal working of

the code. The tester needs to have a look at the source code and find out which unit of the code is

behaving inappropriately.

Fig 8.1 Different levels of testing

8.4 Unit Testing

 Unit testing focuses on the smallest unit of software design. Smallest unit include the

modules which are integrated to produce the final product. The unit testing focuses on the

internal logic and the data structures within the boundaries of the component. Test considerations

Lane switching in self-driving cars using CNN

Dept of CSE 43 NIE,Mysuru

can be the interface, the local data structures, boundary conditions, independent paths, error

handling paths etc.

 The modules of this project were tested to verify its working using unit testing and

suitable corrections were made to achieve the desired functionality.

 Unit testing done on verifying if the lanes are being detected on the screen.

Image type Result with accuracy

Good quality image with clear lines Correct label with accuracy >0.9

Low quality image with overlapping lines Correct label with accuracy <0.6

Good quality image of untrained lanes looking Wrong label with accuracy <0.6

similar to trained lanes

Good quality image of untrained lanes looking Wrong label with accuracy <0.4

distinct from trained lanes

Low quality image untrained lanes Wrong label with accuracy <0.4

Table 8.1 Unit testing

Similarly, all the modules were tested with various test cases and the results were verified.

8.5 Integration Testing

 Integration testing (sometimes called integration and testing, abbreviated I&T) is the

phase in software testing in which individual software modules are combined and tested as a

group. It occurs after unit testing and before validation testing. Integration testing takes as its

input modules that have been unit tested, groups them in larger aggregates, applies tests defined

Lane switching in self-driving cars using CNN

Dept of CSE 44 NIE,Mysuru

in an integration test plan to those aggregates, and delivers as its output the integrated system

ready for system testing.

Test Case ID Objective Expected result

1 Check whether the screenshots are

being grabbed continuously

The number of frames generated per

second must be at least 10

2 Check whether the parameters to

alexnet are appropriate

The neural network should make

predictions with a high confidence

3 Check whether the program is able

to give keyboard inputs to the game

The game should accept inputs from

the code instead of the keyboard

Table 8.2 Integration testing

 Similarly, all the interface links were tested on integration with various scenarios and the

results were verified. Various strategies that are used to execute Integration testing are:

 Big Bang approach

 Incremental approach: which is further divided into

o Top down approach

o Bottom up approach

o Sandwich approach

8.6 System testing

 System testing of software or hardware is testing conducted on a complete, integrated

system to evaluate the system's compliance with its specified requirements. System testing falls

within the scope of black box testing, and as such, should require no knowledge of the inner

design of the code or logic.

 As a rule, system testing takes, as its input, all of the "integrated" software components

that have passed testing and also the software system itself integrated with any applicable

hardware system(s). The purpose of integration testing is to detect any inconsistencies between

Lane switching in self-driving cars using CNN

Dept of CSE 45 NIE,Mysuru

the software units that are integrated together (called assemblages) or between any of the

assemblages and the hardware. System testing is a more limited type of testing; it seeks to detect

defects both within the "inter-assemblages" and also within the system as a whole.

 In our project, we make diligent alterations to the Alexnet parameters to obtain the most

efficient model that results in the relatively high accuracy. We have created proliferates as the

size of the data frame input increases and on modification of parameters in the Alexnet. Thus, we

can state with confidence that the prediction model has a high accuracy when the input frames

are comparable to the size of the data set when the parameters are tuned to specific values.

Fig 8.2 Accuracy plot with x-axis representing number of data frames

 As shown in the graphs, the accuracy of the graphs increases as we increase the amount

of training data. With around 37% accuracy using 60 frames to more than 90% accuracy using

40,000 frames, we continuously increase the accuracy of the system by generating more and

more data for the training data set.

Lane switching in self-driving cars using CNN

Dept of CSE 46 NIE,Mysuru

8.7 Acceptance testing

 In engineering and its various sub disciplines, acceptance testing is a test conducted to

determine if the requirements of a specification or contract are met. It may involve chemical tests

physical tests, or performance.

 In systems engineering it may involve black-box testing performed on system (for

example: a piece of software, lots of manufactured mechanical parts, or batches of chemical

products) prior to its delivery.

 Software developers often distinguish acceptance testing by the system provider from

acceptance testing by the customer (the user or client) prior to accepting transfer of ownership. In

the case of software, acceptance testing performed by the customer is known as user acceptance

testing (UAT), end-user testing, site (acceptance) testing, or field (acceptance) testing.

 This system of simulating a self-driving car using a PC Game amusement accomplishes

all the functionalities that are proposed. It operates efficiently with high accuracy and decisions

taken with a high level of confidence by the neural network.

8.8 Test cases

TC # Description Expected Input Expected Output Status of

execution

Pass/fail

1
Processing of

captured images

Continuous

screenshots

captured while the

game is running

Grayscale images

containing

elements only in

the region of

interest

Pass

2
Detect lines using

canny algorithm

Screenshots of the

game

The lines in the

corresponding

image

Pass

Lane switching in self-driving cars using CNN

Dept of CSE 47 NIE,Mysuru

3
Lane detection by

calculating slopes

Lines detected

using canny

algorithm

Differentiate lanes

which represent

the road from the

remaining line in

the image

Pass

4
Recording the keys

to be pressed

Manual input to

the keyboard

List of keys being

pressed when the

corresponding

screenshot has

been taken

Pass

5 Creating data set

Images and

corresponding list

of keys

A balanced numpy

array containing

the data in a format

which can be

supplied to the

neural network

Pass

6
Training the data

using alexnet

Parameters to the

neural network
High accuracy Pass

7 Testing the model

The knowledge

developed from the

training

The car is able to

drive itself

following the lanes

and avoiding

obstacles

Pass

Table 8.3 Test cases

Lane switching in self-driving cars using CNN

Dept of CSE 48 NIE,Mysuru

CONCLUSION

 Through this project, we have introduced the concept of lane switching in self-driving

automobiles. We have clarified in detail Alexnet, a type of convolutional Neural Network which

is most appropriate for this application. Put into words, the generation of input data sets using

OpenCV, the system architecture and the methodologies employed for simulation. Further, a

demonstration of the transition in system accuracy with the varying volumes of training data is

portrayed through graphical depictions. Thus, we have successfully met with the aim of that

project, which is lane switching in self driving cars using convolutional neural networks.

Lane switching in self-driving cars using CNN

Dept of CSE 49 NIE,Mysuru

FUTURE ENHANCEMENTS

 Robotization in automobiles is a fast developing field in the present world today. To stay

aware of the changing scenario and requirements, the system must be updated frequently. Aside

from the re-enactment of lane switching in self-driving we have delineated through this paper,

there are couple of more areas under this vast field that can be enhanced in future. One such

feature would be the capacity of a self-driving vehicle to have the capacity to discover the way of

slightest harm if there should arise an occurrence of unavoidable conditions. This would

diminish the dangers caused by an extraordinary degree.

 Yet, another healthy addition to this project would be the incorporation of maps and GPS

which are to be integrated with the current system to enable voice over control. This would stand

to provide further automisation in the field of self-driving cars.

